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PHASE TRANSITIONS OF DISPLACEMENT TYPE IN FERROELECTRICS

V. G. Vaks

ABSTRACT: The statistics and dynamics of dis-
placement type phase transztzons in ferroelec
trics are described in microscopic terms. The
coefficients of the Devonshire expansion of the
free energy are expressed through the micro-
scopic parameters. The correlation effects in
the transition region are examined. The spec-
trum of the low-frequency vibrations above and
below the transition point is found.

1. INTRODUCTION

The phase transitions in ferroelectrics are usually divided
into two classes as being of order-disorder type or of displacement
type [2]. In the order-disorder transitions (for example, in
KH, PO, or triglycine sulfate), the ions or radicals that determine
the polarization of the crystal have a number (usually two) of sym-
metric sites of equilibrium in the cell. Since the sites are at a
substantial distance from one another, the total potential in which
the ion moves is markedly anharmonic. Above the Curie point T, the
sites have a statistically uniform population, but below T, there
is spontaneous asymmetry of the population leading to a polariza-

tion. The character of the phase transition under those conditions
is identical to the familiar Ising model [2], and, in particular,
the transition is usually of the second kind. The theoretical de-

scription of the order-disorder transitions comes up against the
usual difficulties of allowance for the strong correlations in
phase transitions of the second kind, whereas the present case re-
quires allowance for the effect of long-range forces of dipole-di-
pole interaction as well [3]. However, the dynamical effects in-
volved in the possibility of non-relaxational vibrations of the
ions between equilibrium sites are usually exponentially small [4],
and the high-frequency dynamics of the crystal has no singularities
close to T, [4,5].

The displacement-type transitions pertaining to ferroelectrics
of octahedral oxide type [1] (for example, BaTiO3) are character-
ized by the fact that the anharmonicity of the potential for all

*Numbers in the margin indicate pagination in the foreign text.
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the ions has the small order of magnitude that is usual for crys- /6
tals. At ordinary temperatures T that are small as compared with
the atomic energies €qto the phase transition is due to a special

contraction (typical of these structures) of the components that de-
termine hardness with respect to a given strain on the cell [6,7].
The small magnitude of the anharmonicity permits the transition to
be described by the usual methods of expansion in powers of the ra-
tio of vibrational amplitudes to the dimensions of the cell, i.e.,
T/eat. In that connection, as will be shown below, the correla-

tional effects characteristic of phase transitions of the second
kind are also proportional to T/e¢ and are everywhere small except

at
for temperatures extremely close to the point of the transition of
the second kind, T,. On the other hand, since a transition of the

first kind usually occurs in displacement-type transitions before
Te 1s reached, there is no danger zone and the expansion in powers
of this anharmonicity can be applied for all 7T's. In thermodynam-
ics this implies a Devonshire expansion in powers of the polariza-
tion [8], and in dynamics it corresponds to the attainment of a
critical vibration called the Cochran vibration with a small and
very temperature-dependent gap in the energy spectrum [7,9-12,u4].

The foregoing considerations, which have been developed in pa-
pers by a number of authors [6-13], make it possible to formulate a
quantitative theory of displacement-type transitions on the basis
of microscopic conceptions. Since the anharmonic components play a
decisive part in the transition, in the present case there is a
rare opportunity for direct determination of the microscopic para-
meters of the anharmonicity through macroscopic quantities. Con-
currently, the same constants determine both the thermodynamics+and
the dynamics of the system in the region of small wave-vectors %k
which has an important bearing on critical effects near the trans-
ition. Therefore, the microscopic approach should permit one to
relate the thermodynamic properties with such dynamic characteris-
tics as the temperature dependence of the frequency and width of
the critical vibration, the dielectric losses at high and microwave
frequencies, and the probability of the Mossbauer effect in the vi-
cinity of the transition.

A microscopical approach to the thermodynamics of displacement
type ferroelectrics was developed in the work of Kwok and Miller
[8] who obtained an expression for the phenomenological parameters /7
of the Devonshire expansion in terms of microscopic quantities.
However, a few questions were not examined in [8], including in
particular the thermodynamic contribution of the critical degrees
of freedom and the correlation effects. Moreover, the microscopic
expressions given there omit a number of terms which have, gemnerally
speaking, the same order of magnitude as the terms included. There-
fore, in Sections 3 and 4 the microscopical expression for the Dev-
onshire coefficients will be improved and correlational effects
will be discussed. The fundamental purpose of the work 1is to
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examine the dynamics in the transitional region. In Section 5, the
general expression for the phonon Green's function will be used to
obtain equations for the vibrational spectrum of the system in the
region of small kK with allowance for the coupling of the acoustical
and optical degrees of freedom and the piezoelectric effect. Thus,
a microscopical derivation is given for the semiphenomenological
equations of Ginzburg [9,14] and Cochran [10,11], and their general-
ization 1is given for the case of non-zero and the region below
the transition. From those equations, an expression will be found
for the spectrum of the critical vibratlons. A marked and mutual
influence is noted between the critical and acoustical branches. It
is found that the spectrum of the five low-lying branches for small

in the perovskites is determined by six constants; hence, an ex-
perimental study of that spectrum will permit determination of
those important characteristics of the crystal. The temperature
dependence of the squared displacements of the ions and the M&ss-
bauer effect close to the transitions will be examined in another
paper.

The examination will refer to an ideal single-domain crystal.
Specifically, the case to be discussed is that of the perovskites,
but the extension to other cases is obvious. A temperature-diagram
technique [15] will be employed as being the most concise method
for simultaneous description of statistical and dynamical proper-
ties. The method and the qualitative findings, including the exist-
ence of the critical vibration, can be applied to the case of non-
ferroelectric displacement-type transitions as well [9,4].

2. THE HAMILTONIAN AND THE DIAGRAM TECHNIQUE

As usual, we shall examine the crystal in the adiabatic approx-
imation, assuming that the energy of the system is completely de-
fined by the statement of the coordinates and velocities of the cen-
ters of the ions. Then, if we expand the potential energy in the
usual manner in powers of the deviations of the ions from the equi-
librium sites in the cubic phase [7,8], for the Hamiltonian we
shall have
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Here ﬁ% and Z%, respectively, are the displacement and the velocity

/8




.

-

v

* operators of the Z-th ion in a cell that is characterizable by the
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The ¢'s are the coefficients in the expansion of the po-

includes only the short-

range forces, particularly the difference between the field acting
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nents corresponding to the long-range Van der Waals forces.
latter effects are described with the average macroscopic field E
which can be regarded as an independent dynamic variable; e; is the
effective charge of the ion, while the neutrality of the cell im-

plies I e; = 0.
1

The

icn and the average field, but does not include the compo-

The coefficients ¢ satisfy certain relations that

follow from the invariance of the energy of the crystal in homoge-
neous displacement:
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where ZZ is the quasi-momentum and N the number of cells, the
Hamiltonian (1) assumes the form
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Here v, is the volume of the unit cell and H int stands for the last
component of (1), expressed through ui In the present paper we

shall not be concerned with the short-wave electromagnetic radia-
tion of wavelengths less than or of the order of the dimension of
the cell (x-ray region); hence, we can coufline ourselives to ox-
pressing the dynamic variables for the field through its»values at
the lattice sites. 1In that connectlon, the summands of Ez in (3)

are defined in the same way as uz while the factor v, appears in

the next to the last term of (4).

The quadratic expression in parentheses in (4) usually can be
reduced to a diagonal form corresponding to non-interacting phonons
[8]. However, if we have in mind an application to the study of
spectra with small % and of the displacements of the individual
ions, it is more convenient to carry out a transformation as fol—

lows: As the "acoustical" variable we select the coordinate uz

uz of the given ion, and 1n place of the remaining ui we introduce
> >

the relative coordinates y = ut—u. Furthermore, we carry out a

canonical transformation of the "optical" variables yz with coeffi-
cients 1ndependent of Z such that for k¥ = 0 the summands quadratic

with respect to y and y in the Hamiltonian Hy in (4) will assume a
dlagonal form

Ta _ za,j . £.2 O ialB ta LB _ .2 2
y; '/_E' z:’"(yo) +§:¢(0)0y 'Z‘(‘”JO’L}‘jxjo)'

i i1 d | (5

In the present case of perovskites with five ions in the cell, the
quantities § in (5) pass through 12 values. As noted by Kwok and
Miller [8], owing to the cubic symmetry, the 12 quantities Aj in

(5) break up into four thrice degenerate values xb (b = 1,2,3,4),

>
and for each b three unit vectors 3j = €5 correspond to three po-

larizations ¢ along the principal axes of the crystal:

1o - . > - o ’*b = bO'.
eps = ‘/m—i—vi(b)dao’ yz -Ebv (b)xb_k,, <xbz>0 acz (6)

After the transformations carried out above, the Hamiltonian (4)
assumes the form
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Here we have introduced the notation
M = E m.s Vi = E mivi(b); 2y = E eivi(b); Aa8+ =:E:®£QJB H
’ T - - (k) - ()
7 1 7 17
R 7078 aB T _ a8 ' .
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and in the
through Z,;

7
Hamiltonian Hi the displacements 4’ are expressed

nt

b

The matrices 4, V, and § in (7) and (8) go to zero at small k.
That is implied for 4 and ¥V by (2) and (3) and for S by (5) and (6).
Owing to the splitting-off of the long-range electromagnetic forces

into a separate term, the potentials ¢ (%) and the matrices a4, Vv,

and § are analytic on small z. Hence, for k smaller than the re-
ciprocal dimension 1/a of the cell, and with allowance for cubic
and mirror symmetry, the expansion of these matrices can be written
in the form

2 [ t al. 7 2 [ t a\.

Mk <azg ta,g +a g ) s Vo= k /ﬁ'<vzg *U. gtV g ),
1.t . a\ '

%2 (sZg +'\stg +.8ag ) . !

|

the indices b and b'
a., v. and s. are constants;
7 1 7

A = =

(9)

S

have been omit-
and the

Here, by way of abbreviation,

ted from the matrices V and S; ,




tensors gi depend only on the angles of the vector n = Z/k:

3
A t
= n . =5 - . a a B,== 2
Tap = "o Tag T Cap T MoMgd T4 T Z e e lne )2, (10)
c=1 {
> . . ~ . . 4
where e0 is the unit vector of the principal axis <. In feormulas

(9) for A4 and V, the mass M of the cell has been split off as a
multiplier to reduce the quantities ass vV, and s; to a single di-

mension, the square of the velocity. At the same time, the con-
stants a, are expressed through the elastic moduli Cik as follows:
a, = (eg,+%un 1. 4 =2Suu . 4 - (cll_clz_cuu ) 1 ,!
= e —_—1T = s = e !
A 2 P t Lo a 2 P ‘ (11)
where p = u/vc is the density. The quantities with the index "a"

in (9) define the degree of crystalline anisotropy; for example, a,
defines the elastic anisotropy of the crystal.

As has been noted by a number of authors [7,8] and as will be
evident in what follows, the phase transition takes place at temp-
eratures 7 much lower than the atomic energies €0t if and only if

one of the constants Ab in (5) and (7) which we shall call Ac is
negative and small as compared with the other Ar, being a quantity
of the order of Ar T/Eat' We shall call the corresponding degree
of freedom the critical degree of freedom ;c; we shall designate
the other "H"'s by the letter r. Owing to the smallness of Ao for
the critical degree of freedom at small %, substantial magnitudes
are assumed by the anharmonic contributions arrising from Hint as
well as by the terms from Vc and Scc that are proportional to k .
For the other degrees of freedom, the analogous corrections are

negligible as compared with the large quantities AP.

Let us choose a normal calibration of the potentials of the
=

>
electromagnetic fields: div i = 0, A = 4 Then the dynamic vari-

L
ables in the Hamiltonian (7) will be the coordinates % and gb’ the
-5
scalar potential ¢, and At' Therefore, if we introduce the eight-
>
een-component vector gi with components (Z,zb,¢,At) we will be able

to write the temperature Green's function of the system [15] in
matrix form:

~
[
[
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The symbols here are: B = 1/T; T is the sign of T-ordering [15];
iwn = 2¢mnT are the imaginary frequencies of the temperature dia-

gram technique; gi(r) = eHTgie'HT, éi ] (gi>, and the mean of the

expressions in brackets stands for the trace

(oud) = Sp[(...)exp(-BH)]-[Sp exp(-gH)]"1

The zero Green's function Gy corresponds to the Hamiltonian A

in (7) and as usual is defined by the equation [15]

HO. g0, = ¢
g gl

11
where Hoij stands for the coefficients of %gigj in (7) with the
operator replaced by the derivative of the imaginary frequency with

the time (Z—»m ) and with a change of sign in the diagonal term

. k%v
corresponding to the scalar potential [15] (H0¢¢ = - uﬂc). The
explicit expression of the matrix G51 has the form: \
erz-fA w2Vu +V 0 0 \ /12
n n b b
W
2 — o+ 2 g n
k 2, ——
| ]wn/ub +Vy mn+xb+3bb, ikz, b \
—1 g - i
¢yl(k i ) =| . k2o
‘ 0 -ikz - 0
b b
2
l 0 z n 0 Ze i—-7:L-+k2 1
{ b e Ut \ o2 L

Here the first line and column correspond to dlsplacements u, the

second to xb, the third to ¢, and the fourth to At vt stands for

the matrix that is the Hermitian conjugate of V. It is assumed that
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the wave vector k is much greater than the reciprocal dimensions

+
* 1/L of the specimen; otherwise, kX must be taken as an operator of
differentiation with respect to the coordinate (see Section 5).

The anharmonic term in (7) can be written as

© |

q _ ' 1 Ny (n) |

int = Led 7! y 8s. 55 -8 Voo i | (11)
_ . . Sy 4 “n “iv2 *n
n=3 11s%2¢0.1

Each of the displacements Ei entering into (14) is understood

>
to have the momentum index k while the potentials V(n) ., =

1117
n
Vfl...fn are nonzero only for values of the total momentum equal to
1 n > >
the vector b of the reciprocal lattice: k1 + ko + 00 k= b.

n

The diagrammatic technique is formulated in the usual manner
[13,15]. Each Green's function (11) is represented on the graph as

a solid line, and each term V(n) in (14) is represented as a vertex
with n outgoing lines. As in the case of a non-ideal Bose gas [15,
8], moreover, one must isolate the nonzero mean values of the coor-

—>
dinates Ty and the deformations u in the optical and acoustic de-

af
grees of freedom, respectively. Diagrammatically, the means will
be pictured as small crosses with dotted lines going out from them.
After computation of the free energy F, the equilibrium values of
the homogeneous displacements and deformations can be found fron
the condition of minimum F.

3. COMPUTATION OF THE FREE ENERGY
Taking into account what has been said in Section 2, we can

write the graphic expression for the densities of the free energy
F in the form

(15)




In estimating the order of magnitude of the different terms of
(15), let us assume as a specific example that the phase transition
occurs at temperatures greater than the Debye point of the crystal
OD, as in most of the perovskites and in BaTiO3. We also take into

account the fact that the deformations U, and the square of the

B
spontaneous polarization P2 in atomic units have the order of T,

while the anomolous rigidity AcﬂkrT/aat' Then the first six terms

la—lf in expansion (15) have the order of T2, and the other terms,

that of T3, Thcse latter terms could be neglected in the case of
"normal" transition of the second kind, in which the temperature-
invariant constants in la—lf and lg—lZ have one and the same atomic

order of magnitude. However, the fact that the transition is a
transition of the first kind close to the second kind, and the fact
that the coefficient B in the fourth power of the polarization in
the Devonshire expansion is highly dependent on the temperature [1],
indicate an anomolously small magnitude of B with respect to the
constants of the following approximation and also indicate that
corrections to B must be included. The temperature contributions
to the other quantities, such as the coefficients of elasticity or
electrostriction, are already negligible [1]. That has been taken
into account in the plotting of the diagram in Figure 1, where the
circles with three outgoing dotted lines, for example, are omitted,
since hardly one of these dotted lines should correspond to an a-
coustic deformation on considerations of parity [8].

With (7) and (1u4), the analytic expression corresponding to
(15) is written in the form:

_2 -2
1 1 ;b S > F
F - Fo(T) = = - =2 -z 5_
0{T) = 5 C pys¥aphys * v 2: R L T I v
b
T .. ELELE E.z.t.€ .
£ Vi % Tdtg + gzgggz y000 gtggglgm 0000 Teiglm +
T o2v, 1°d uvc ch! 41 vcu' id1lm 2
R S -
11712 lg Voo...o (16)
UGGT 1.'17:2...7:6 ) T

Here, Fp(T) stands for the path of the free energy that does
not depend on the mean displacement, and we have:
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The upper indices of the potential V stand for the values of the /14
kn o _ 7. o
momenta; G = G(ktmn). The repeated Greek letter indices are un-

derstood to mean summation from one to three and the English indi-
ces are understood to mean summation over all coordinates from one

to 15. The symbol Eé for optical coordinates Eb stands for a sim-

ple mean Eb, while for acoustical coordinates it stands for defor-

mation uas. In the latter case, the index "0" in the potential

Vg:" actually stands for the limit for k-+0 of the corresponding
derivative of this potential multiplied by (-4) [8]:

i... B ka ' 3 i... J

1im [ul ¥ = % ung + u_ % Vg _ =|
k~0 %o k k B k=0 |
. 3 k...
u -tV -
ag \ Tk Caa.. )z g (18)

since the potential Vg::: itself is equal to zero owing to (2).

For what follows, it is important [7] that in the integrals

over k¥ in (17) the region of large-wave vectors kK ~ 1l/a is substan-
tial since the contribution of the region of small k is suppressed

by the statistical weight of ~ k3. For those fairly large i, in
the Green's function the influence of Ac and of the temperature-

dependent anharmonic corrections, remains small even for the criti-

11
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cal branch since the coefficients 8 (9) have, generally speaking,
the normal atomic order of magnitude. Therefore, in the first ap-

proximation the functions & in (17) can be replaced by GOO(Z,iwn)

as given by (13) for Ac = 0. The influence of the subseguent terms
is discussed in Section 4. After the substitution, the quantities
Yoo deoy €., in (17) are smooth functions of temperature and for
7 1g 1d1lm

T>6,, in which case we can confine ourselves to the classical sum-
L’

mand with # = 0 in the sums over »n in (17). Those quantities are
constant.

To state F in terms of polarization and strain, we also take
into account [8] that the zero potential displacement of the criti-

- _> . . .
cal coordinate average x, is much greater than the residual dis-

> . . . . >
placement averages z, since 1in the determination of xb from the

condition 9F/3z = 0 the displacements of gr are inversely propor-

_> -
tional to the normal hardnesses Ar while x, are inversely propor-
tional to the sum of Ac and of the anharmonic corrections of the

order of *’APT/sa Correspondingly, the polarization 3 of the

£
>
unit volume is determined by the coordinate z,

>
> — g X
_ 1 z : > ee
P = > szb -_ > . (19)
Ie] e

As a result, (16) assumes the form of the Devonshire expansion [16,
1]:

{
e u_ u T-T . 2 . '
) . 15
F - Fo(T) afy® aB Y8 _ yry +2qP2 ¢ _pr + £ —-\ 13
2 0.0 C+ 8m
|
l }
B11 b By, s 01112
— 12 6
anyépaPBuyﬁ T 2 : Ps - ; Pépg, T T Ps
o] c>g ' (o
0112 o2 2 2 2
+ 5 Z PGPG’ + 0123P1P2P3 . (20)
oc#o'!
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In accordance with (16) - (20), the parameters of the expan-
sion are expressed through microscopic quantities in the following
manner:

. — 7 2 2\
Y _ ¢ _3 -(p+k)kp Gkn s C =(fx = umz, N ’
.. - T 5|
6 Bpa — 'LJaa 13 S=0 + 11 UC C 11
kn
33,0000
iV == voV1111
c 3 0-pp _ ¢
= — = B = b + Te b = ;
qasys 2 aP(S aBya §=0 > “uB oB g > Y11 6364 >
370000 3 v 3e
b _ Vo V]]ZZ ey = Yo %1111 . ey = e "1122
- - ’ - s
12 225" 12z bzt
57000000 » 51000000 p 57000000
Y% 111111 o _o_e 11122 ., _ _c 112233
111 < 20 6 ) 112 = bz 6 > 123 8z 5 .
1 2, e e (213

The Greek letter indices with the subscript "aq" in the potentials
in (21) correspond to the acoustical degree of freedom and those
without a subscript to the critical degree of freedom.

The expression of the coefficients vy, das and eGBYﬁ through

the microscopic parameters (17) distinguishes formulas (20) and (21)
from the results of Kwok and Miller[8]. In [8] these constants are
computed in approximation to the self-consistent field, which in

the diagrams of Figlre 1 corresponds to rejection of the summands

1f and 1j-17. As noted above, those diagrams have the same order

of magnitude with respect to the parameter T/Eat as do the others.

Moreover, in the final expressions analogous to (17) the authors of
[8] suggest that on the right-hand sides the contribution of the
critical degrees of freedom be completely neglected, "since their
inclusion leads to components in F different from the Devonshire."
Those summands correspond to the contribution to F of the region of
small k and are discussed below. However, as has been mentioned,

those corrections are proportional to the degree of T/eat and are

small. In the principal approximation, in integrals (17), the sub-
stantial contribution comes from the region of large k and must be
found by taking xc = 0 in the critical denominators, after which

the critical degrees of freedom introduce into the constants a con-
tribution of the same order as do the residual ones.

13



4. GREEN'S FUNCTION. CORRELATIONAL EFFECTS

The exact Green's function (12) satisfies the Dyson equation

[15]:
G;}(%,iwn) = (?;1(E,iwn)>ij +-E .-(E,iwn) (22)

where Zij is the self-energy part. Graphically, the expansion of
£ in powers of the intcraction and analogous to (15) can be writ-
ten in the form

B3 2N (23)

As was noted above, the anharmonic effects are substantial for
>

the critical degrees of freedom in the region of small k. Moreover,
below the transition there appears in the crystal a piezoelectric
effect that is proportional to the polarization of the linear con-
nection of the acoustical and optical branches, it being sufficient

to allow for only the connection with the critical branch. Thus,
in the matrix Zij it is sufficient to find the elements ch and
_+

Zac for small k while the rest of the Zij can be neglected. Com-

paring the analytic expressions to the diagrams of Figure 2, we
obtain

1

—ﬁ> raB‘ v d. (iw )

e . e 11 n .
— (0,Zw ) = & - 2 u + 3({b + Te

ZGQE: ce R ap 2302 Tagysys 11 11(Lwn)

s s 2 . 2
Z wo8eoPe’ * (P12 + Terz(iu) Z: (8068a0Par + 8, 850 1PP 1)
o o '#o
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a B

(k,tw = Q" = 2iz [élzk P, + — [P + 6 kP )
) ae " k<<l/a ¢ o B * o8 B
o B - >
¥ qazec s (kec)(Pec)]~ (2ub)
5 ‘ . : : . o . o
Here the same notation is employed as in (17) and (21); the

q;5 are the coetficients of electrostrictiong 9, = 9117912-9uu/2 is
the constant of strictional anisotropy. The amounts by which dj;
(iwn) and eas(iwn) in (24) differ from dy; = dy; (0) and e = ©ag /17

(0) in (17) and (21) are related to the amounts by which diagrams
2d and 2h-2n of Figure 2 differ from 1f and 1j-17 of Figure 1. In
Figure 1, on those diagrams are found the Green's functions for a
given value of the frequency iwm over which the sum is extended. In

the analogous diagrams of Figure 2, one of the & has both the in-
ternal frequency W and an external frequency w, G(k,imm)+

G(k,imm + imn). However, if we do not examine the case of the very

low temperatures of transition, of the order of a few degrees, then
for small k¥ the thermodynamic contribution of the summands with

n # 0 is much smaller than for n ® 0 and the argument of dj; and
e,g can be omitted. We can proceed similarly with the examination

set forth for the low-frequency dynamics in Section 5, when in (24)

iwn is replaced by the frequency w, i.e., dyi1(w) = dy; and eas(m)
_>

~

eaB’ since for the large k which are important in integrals (17)
the small frequency w is negligible as compared with the other
terms of the denominators of G.

With allowance for (22) and (24), the Green's function takes
on the following form instead of (13):

K/;mn2+A wn2/517:5 wnZJE;I?; 0 0
{ wn2/u+V++Q+ wn2+50+5 'Scr i%zc z
|
G'l(éiwn) 4 wnz “r+Vr+ 5 e w 24X +5 ikz 2
% - - —vckz
] 0 ~ika, ~ikz — 0 (25)




Here Sg is the sum of I and Ac; the second row and the second

ece | . > .
column correspond to the critical coordinates x, and the third to

e
> . . . e s .
Z, and the index "e" is omitted from the critical matrices V, S

and Yu for the sake of abbreviation of the notation.

The components of the matrix Sy can be expressed through the

dielectric constants. Let us examine, e.g., the tetragonal phase

with polarization along the x-axis. Determining the zero potential
values of the strains from the minimum 7 condition and substituting
the values found into (20) and (24), we have:

2 2
SOLB VI Y b 2(q11+2q12) . §p2(q“_q12)“
0 - al B1 e f 3 eri1t2eqo 3 cC11-¢12
11
|
2 !
QL+L+ i
voast [ 24 p2 | (26)
aB il Cuy . s
Here 6% = § -6 § ef and ef are constants of the free crystal
oB af al Bl? Twu A y

along and across the tetragonal axis:

In Section 5 it will be shown that the expressions in paren-
theses in (26) must be equal to the reciprocal susceptibilities of
the pressed crystal, for which reason relation (26) could be ob-
tained by thermodynamical means as well from the equation (38) to
be given below.

Let us now discuss the correlational effects [3,14]1, i.e., the
additional terms appearing as a result of a substitution into the

right-hand sides of equations (15) and (17) for F and (23) for I
of an exact Green's function instead of the G090 used above, cor-

responding to Sy = § = 0. We find, for example, the correction &
-

in graph 2¢ for ¥ with k = w, = 0. TFor the sake of simplicity, we

shall confine ourselves to the region bélow the transition tempera-
ture Tg and to the case where Ty is not too small. Under those

conditions, as has been mentioned, it is sufficient to confine
one's self to the classic summands with n = 0 only in the sum over
the frequencies w, that corresponds to the internal line of the
diagram:

537V 0,0y = a7 pook-kf (k. 0y-6°%%,0)) |
aB Lt aBis \ I tJ (27
K, ‘:
CE i

16




In accordance with the method of successive approximations, we
take the expression (25) for the function G, while for the T>T{ un-

der study the equations Sy = U4mi/ejy and e¢ = C+(T—Tc)'1 will hold.
The integral (27) converges on small k ~¥ave, for which reason the

-+
values of G and G%0 for small X enter into (27). Under those con-
ditions, the matrices Vb and Sbb’ of (8) that describe the crossing

of different branches according to (9) tend toward zero. Therefore,
in G it is sufticient to Lake intoc account only the critical and
acoustic branches for which the denominators of the Green's func-
tion are small at small %; in formula (27), however, we need con-
sider only the critical components since the acoustic potentials

VOOk-@ and Vookfk at small k return to zero according to (2). Af-
aBy ¢, aBy,8q
ter we drop the electromagnetic and acoustic components, G as-
sumes the form: ce
+ -1
: L v)

G,o = (So 8 +2ag” -V T

(28)
where ) and gZ are the same as in (21) and (10). It is clear that
[thanks to the long-range dipole interaction in (28)] there has ap-
peared a linear term proportional to g“, a coefficient at which )
assumes the order of the square of the plasma frequency of the ions
and at the small values of k under consideration there are many
more residual terms of the denominator (28). Therefore, the linear
degree of freedom in the region under consideration l/a>>k>>1/L
ceases to be critical [7,19,4] and in (27) it is sufficient to take
into account only the transverse components

(2¢) _ § : 0000 + 1 -1 + 1 -1
GZOLB = 37 V(XB'Y(S [(SO + S -V E V)'E - (S -V :4— V)t].ll (29)

k

Here the indices ("');1 in the matrix R mean that R must be pro-

jected on the subspace (plane) which is orthogonal with respect to

7o Rt = gtht, and therefore we employ in this subspace the matrix

inverse to Rt' The values of the elements R;l can be found from

the matrix (R + Agz)'I if we make )-w:

-1, 1 5 N

(& - 3 |

t ag In n A (0) 3¢ Aas(g)lg=o ! (30)
nv viuv 1

where AaB(g) is the algebraical supplement of the matrix element

R + gnan

aB B'

If in (29) we substitute (9) for S,V,4 and introduce the new
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- e >
variable & = |k|/eg/X with integration over k, the integral (29),

assuming cubic symmetry, can be converted to the form:

2¢ LAl
- S | (31)
Veg 1
where o o '
2 p ’ -1 !
g, = — V2 o+ 2by ) faz (a7 sp ’-(l + x26) ¢ ],i
c 6 5 J 4 - L t
267 0 L 4 (32)
= s + 8 g% - (v,g" + v g% (a,g” + a,g” + agH (v Qt + v g%,
¢ td a? t a [ t t a
gi, baB are the same as in (10) and (20), and dn represents inte-
gration over the vector angles .
The correction for the graph 2d is calculated similarly. How-

ever, the result assumes the form (31), and the corresponding con-
stant sz is proportional to the square combinations of the stric-

tion constants 9% divided into the modulus of elasticity Ci

%

Since we have to keep in mind the relatively small size of bas’ a
quantitative calculation must also take into account some graphs
which are omitted from Figure 2, i.e., the graphs 2f:++2n in which
two dotted lines are replaced by one solid line. The insertion of
these terms leads to a substitution in (32) baB+TnaB, where the
1 ~ in (20). 20

values LaB €up 1D (20) /

The components AGcc’ according to (38) below, are equal to the
dielectric permeability €. Hence, the formula for € with correc-
tions of the first approximation assumes the form:

-1 c C ,
= - = e
e = (1/¢eq JT//EO) 1+ ITYrh | (33)

A o)

where the value J is equal to the sum of the terms of the form (32)
given above.

The correction term in (33) assumes the conventional form char-
acteristic for corrections to a zero approximation of a self-consis-
tent field [14,3]. The correction terms for other thermodynamic
values as well have an analogous form [3]. The constant J in order
of value is equal to the inverse atomic energy l/eat; therefore, as

we have already mentioned, the principal parameter determining the
suitability of the zero approximation (20) and (25) and the small
size of the correlation effects is T/eat.

18



Let us estimate the correction term in (33) for BaTiO5. In

. this material b _Te and q. 2/e .. are the values of one order so
aB” TaB ik’ 71k

that for estimating J we can use (32). The value ) is inserted into

the formula for the spectrum of the critical vibrations (41) and we
can conclude from a comparison with the data in [17] that /) ~ 1013
Hz. The data with reference to 5; and vi in BaTiO3; are unknown,

but in SrTiO s, a. [18], so that we can expect the same thing in
this case as well. If we use for baB and ai the values given in

[1], we will have

3/2
S (byy + 2b,) 1 4

J ~ ~ 3 JT ~ 5410 (34)
3 5
327 s 3/2 70_,

t

i
At the transition point, the correction term JT/gO in (33) amounts
to about 5%.

5. SPECTRUM OF VIBRATIONS AT SMALL Z

The dynamic properties of the system can be described satis-
factorily by using the Green's time function [15] ¢(?¥):

Gij(t)(51t1,52t2) = <j;Gi(§1t1) - €i><€j(5zt2) - £j>ﬁ ]
(35)

_ iHt_ _-iHt
gi(t) = e £;e .

The Fourier component of the time function G(t)(z,w) can be

found from the temperature function G(k,Zwn)(12) by means of an an-
alytical extension with discrete number of points Zwn in the com-
plex plane w on the real axis [15]:

¢ P (k,0) = 6(k,u) (36)

Hence, in the approximation G(t) under consideration, we ob-
tain matrix (25) by the exchange wn+—iw.

The excitation spectrum is determined by the G(t) poles, i.e.,
the frequency values at which there 1s a solution in the corres-
ponding systems of similar equations [15], where the characteristic
vectors gi determine the amplitudes of the displacement in the ex-

citation. If we shift from the potential component to the elec-
trical field € for the sake of clarity, we will have for the deter-
mination of the spectrum the equations
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(4 - pw2)u + (V+ @ - 2/)z + (V - w2/5 )% = 0
(&4 r r

(vt o+ @t - w2/u o+ (59 + S - w?)x + 5 % - s5E =0

wmvH 0 e er’r e

+ + " >

( _ 2 _ .2 _ -
v, w /El)u + 5, %, + L(AP w2)s_ ., + Sm»"lxr' 2, E =0
bme? o, 2 +z§>+<f—a - k28 . + k kK. )E, = O
v, ee rr o oB aB a " B’78 . (87)

c |

System (37) differs from the conventional equations of harmonic
vibrations by the existence of a dependence on temperature and de-
formation in the values of Sy and ¢. These equations are very

clear, and analogous semiphenomenological relationships were writ-
ten previously by Ginsburg [9,14] and Cochran [10,11]; who called
them "a linear anharmonic approximation". These equations have
been given above microscopically, and the regular method used makes
it possible also to investigate higher approximations in terms of
the parameter T/Eat and (to a certain degree) the effects of damp-

ing [4] as well.
In regions of small k and w the relationship between the crit-

ical and acoustical+branches with other branches in (37) is small,
and the components x, can be disregarded; for 4,V,$ and @, however,

expansions (9) and (24b) are used.

~
N
N

In the case where we are considering macroscopic wavelengths
greater than or on the order of the dimensions of the crystal L the

>
vector Kk in (37) must be substituted for the differentiation oper-

-
ator 3/9%F in (37) is changed into a set of equations for the theory
of elasticity and electrodynamics [19], taking account of the pie-
zoelectric effect below Ty. We can see from (37) that when we con-~

>
sider the vibrations in a uniform field E, the piezoelectric bond

of the critical branch, which determines the polarization, becomes
significant only for the frequencies w <1/LVa., i.e., in the region
of piezoacoustic resonances. At high frequencies, the link between
the branches falls as 1/w?, so that the value of Sy in (37) deter-

mines the dielectric permeability e at those high frequencies,

which is called the permeability of the pressed crystal:

e = a(Se”") 3 8¢ = A/e (38)

aB af
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>
After omitting the component E, the equations for the spectrum

at small k¥ and w assume the form

|
(4 - Mu2)u + (V + @ - wZ/E)Sc’c =0 *

(39)
t 2 =
(V + Q+ - w2/ o+ L+ 5 - w2+ Agl - Ag ———g———)xc = 0,
€ e2k2-u2 !
If we do not take into account the very long waves 1/k > 1073

.
cm, where there is a definite crossing of the phonon and electro-
magnetic branches [20,4]1, then the relativistic transverse term in
(39) can be disregarded. Of the remaining six branches, one which

is linear optic assumes the high frequency w =~ ¥A and will not be
considered, since at the transition from (37) to (39) the frequen-
cies are considered small. Therefore, in (39), there remain only
the transverse critical coordinates and the equation for the spec-
trum can be written in the form

Det || 4 - Mw?2 + (V + @ - wZ/E)(%+ s - wz);l(V + @7 - w2/ = o
' (40)

where the designation ('“)2,5_1 is the same as in (29) and (30).

Thanks to the transversality of the critical matrix, the linear

parts of matrices S, Vand § do not make any contribution to (40).

Therefore, in matrix QaB (2u4b) it is possible to omit the term

which is proportional to kB, and in matrices ¥V and § (9) to insert /23
= d = R

vy v, and s, 4

axes of the crystal, ¥V and S will be diagonal. At known elastic

striction and dielectric constants, the spectrum of the five branch-

es, given in (40), is determined by the six constants A, u, St’ Sa’

and v, and its experimental investigation makes it possible to

After this, in the system of the principal

Yt

find these constants. Let us note, however, that since the coordi-
nate of any of the ions of the cell can be chosen as the acoustic
coordinate, the regeneration of these constants in Section 2 along
the spectrum is not completely unambiguous. The vibrational fre-
quencies are expressed only by such combinations of A, u, §; and v

which are independent of the indicated choice. Therefore, a com-
plete spectralanalysis makes it possible to determine only certain
possible groupings of the constants (according to the number of
nonequivalent atoms in the cell).

The five branches described in (40) at the very smallest val-
>

ues of k can be divided into three acoustic branches with linear
dependence of w upon k, and two transverse critical branches with
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a gap in the spectrum which is proportional to e~% ~ |T_Tcl%' Thus,

in the tetragonal phase we have

2 2 |

(o e\

2 = ~—————-———>\ . 2 O >\ + t
w,, “(0) (I-w/M)e, ° W (0) = 7w €, €11 i (41)

Aside from the temperature dependence of this gap, the essen-
tial property of this spectrum consists in that it changes consider-
ably with wavelengths which are much greater than the interatomic

distances a. Thus, in the region l/a>>k>>wc(0)(/52)% we can dis-

regard Sy and @ in (40) and all five branches will have a linear
dependence of w upon k. With k ”wc(O)ai'%, there is a sharp break
in the dependence of the acoustic frequencies upon k, and the velo-
cities of sound at small and large frequencies do not agree.

For the sake of illustration, let us consider the partial cases
in (40). If k is directed along «x, then the five branches (40) will
be divided into one linear acoustic branch_and two pairs of degen-
erate transverse vibrations. However, if k is directed along the
the principal axis, perpendicular to the tetragonal axis, we will

have only one pair of branches whose polarization is perpendicular
5 .
to k and ?, while the remaining transverse branches below Ty will

be combined with the linear, and the dispersion equation will be-
come cubic:

1) n, = i,nLr - 0: w,? = -kz(aZ 4 a,) |
(kzat - wz)(kzst - w? 4+ E%) - (kzvt - wz/E7M)2 - igéggiikz =0
2) my = 1, np = ng = 0 (Kla, - w2)(kZs, - w? + gi) -
(kzvt _ w2V = o (42a)
k2(a;, + a)- o | [(KPa, - w?)(KPe, - w2 + 8?1) -
— 2 \P2q, P k?
(kzvt - w2Vu/M) ] - (kzat - w?) == = 0.

(u2b)
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To illustrate the angular dependence of the spectra below Ty,
let us consider the hypothetical case of a crystal in which we have

the constants a_ = vy = 8§, = 0 in (9). 1In BaTiO3, for example, the
constant of angllar anisotropy a, is of an order such that a, and
aj:a a,a; B 0.6:0.44:2.2., At the values under discussion, this

anisotropy is usually insignificant. In this case it is preferable
to carry out the calculation in a system of coordinates where one
>

of the axes is directed along k, and the other is perpendicular to
>

>

k and P. Then we again have a pair of branches with a pclarization
> > * i

perpendicular to k and P and for others we obtain an equation of

the third degree: ,
(K?a, - w?)(K%e, - w? + 2 - (K2o, - Ww2/A7ID -

€1
21,2 2
APck“n, (qm+ . 2)2 .,
5 m "L )
An, 2 An ., 2
(K2a; - w?) | (K2a, - w?) (K%, - o} + —— + ——)
€11 €1
2 232 q
- (%o, - W2/ | - %k— (k2a; - w®)n 2(% + qn,2)°
2
t (kPa, - wz)"_,_z(qlz * g m,?) = 0, (43 ]

In BaTiO3, €, is much greater than g, , and 9, is a constant

L
9125 9yy /y such that the anisotropy of the spectrum below T; is

significant.

The formulas in this section were obtained by disregarding the
relaxation processes. Frequently they correspond to isothermal vi-
brations; at the same time, depending on the relationship between
k, w and the coefficients of thermoconductivity and persistence of
the oscillation, they can also be adiabatic [1]. However, these

effects are proportional to the higher degrees of T/eat and are

small; for example, in BaTiO3 the difference between the adiabatic
dielectric permeability and the isothermal permeability amounts to
about 3% [1]. The damping of the vibrations in the ideal crystal
under consideration is also proportional to the higher degrees of
the anharmonicity of T/sat’ and (as estimates will show) they are

small. Therefore, the large value for the width of the crystal vi-

brations which was observed [17] and the dielectric losses at ultra-
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high frequencies [1] are apparently related to the scattering at
crystal defects. These problems will be discussed in greater detail
in another paper.

6. CONCLUSION

In conclusion, we would like to make two observations, one of
which is methodical and the other is of an experimental character.

Let us consider the relationship of this paper to a description
of transition using the method of the sell-consistent field [3,4].
In [3,4], the radius of interaction rj of ions of different cells

was assumed to be large. Therefore, the interaction is described
well by the mean self-consistent field, and the correlation of ef-

fects were proportional to ry~%. In this paper, the small param-

eters are the anharmonicity 7/¢ and the abnormally low degree of

at
rigidity Ac ~ XPT/eat. The anharmonic correlation effects are sig-
nificant only for phonons with low k AJ% VT/¢

the motion of the

at’
remaining phonons can be considered harmonic and independent of
transition. Therefore, in calculating the field acting on a given

ion, an important contribution is made by the noncritical phonons.
The field can be considered independent of the position of the ion
and can be replaced by an average value, disregarding correlation.
Thus, the approximation used is analogous to the approximation of
the self-consistent field; only in [3,4] was use made of the small
degree of correlation between the particles in a different cell.

>
Here, with low anharmonicity, phonons with different kX are inde-
pendent of one another. Therefore, the general results and the

form of the temperature relationships (20), (33), (41) remain the
same as in [3,4] and the phenomenological theories [16,19,14,10].
There is only a change in the expression of the phenomenological
constant through microparameters: 1in [3,4] they were expressed
through the mean temperatures for independent particles, while in
this case they are expressed by the averages for independent pho-
nons., This is explained by the fact that in the models of Devon-
shire [16] and Slater [6], who used the method of the self-consis-
tent field, the same results were obtained (agreeing with experi-
ment) as in weak anharmonicity [7]. In this connection, the theory
expressed in [4], stating that the success of the phenomenological
theory for perovskites indicates a large ry of these systems, does
not appear to be necessary and sufficient; a much more likely ex-
planation would be the small size of Xc and the weak anharmonicity.

From the physical standpoint, the case of the applicability of
the method of the self-consistent field and the solution according
to anharmonicity are different. For the former, we require a large
radius »g3; anharmonicity, on the other hand, can be arbitrarily
large and can frequently be a case of an order-disorder transition

24
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[3,4]. The regions of applicability can of course overlap; for ex-
ample, at large rj3 the value of Sy in (34) is proportional to rgy?

and the correlational correction is proportional to rg-3.

A second remark is directed toward the structure of the crys-
tals under consideration. As we have pointed out, the constants

eaB’ OGBY in (20) in perovskites are abnormally large relative to

the constant of the first approximation b this 1is partially re-

aB’
sponsible for the closeness of the transition of the first type to

the second. In accordance with formulas (21) and (17), this means i
that the critical potentials v(6) in the corresponding atomic units |
are much greater than the potentials y(), Large values of y(6)
can be related to a known feature of the structures: a dense pack-
ing with very small "free space'" for relative transitions of the
ions [1]. This can lead to a sharp increase in repulsion at small
values of %¥,, 1.e., a situation of the type of a rectangular hole.

In this connection, it would be very interesting to determine the

(n)

microscopic potentials of V in (21), i.e., the constants z, or

Ac, which (as we found in Section 5) can be achieved by investigat-

ing the dynamics. It would also be very desirable to find transi-
tions of the displacement type in other nonferrcelectrics and non-
oxygen-octahedral crystals, since it is clear from what has been
stated above that the characteristics of thermodynamics and trans-
ition dynamics of displacement type are not at all related to ferro-
electricity and may have a general character.

The author is deeply grateful to A. I. Larkin and V. M.
Galitsky for their assistance and valuable advice.
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THERMAL OSCILLATIONS AND THE MOSSBAUER EFFECT IN THE
REGION OF PHASE TRANSITIONS IN FERROELECTRICS

V. G. Vaks, R. M. Galitskiy and A. I. Larkin

ABSTRACT: Anomalies of thermal vibrations and
the probability of Mossbauer absorption in the
vicinity of the phase transitions are discussed
for the case of ferroelectrics. For transitions
of displacement type, the anomalies are expressed
by dielectric characteristics and certain con-
stants which are determined by the low-frequency
spectrum of the crystal. Anisotropy of the vi-
brations below the transition was found. Esti-
mates of the anomalies are made for order-dis-

~
N
w

~
w
(@]

order transitions.

1. INTRODUCTION

In Part I of this collection [1], we discussed the
namics and low-frequency spectra of vibrations in phase
of displacement type in ferroelectrics. In the present
methods which were developed there will be applied to a

of the thermal vibrations and the mean quadratic displacement in

thermody-
transitions
paper, the
description
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\
\
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the vicinity of the transition. These values can be investigated

experimentally by x-rays or neutronographs [2], but the

accuracy

obtained is evidentally insufficient for studying the thermal re-
lationships. Thermal vibrations have recently been investigated in
ferroelectrics in a number of experimental papers, employing the
Mossbauer effect [3,4], and anomalies were detected in the .Debye-
Waller factor in the vicinity of the transition. Theoretical eval-
uation of these experiments has thus far been limited to general

theories about the possible influence of the critical vibration [5]

without any attempt at a quantitative calculation. A more detailed

study of this paper shows that in the effect observed,

along with

the temperature dependence of the critical frequency, there was
also a significant piezoelectric effect and a difference between
the phase transitions of the first and second types. The resulting
expression for the anomalous frequency of the average displacement,

on the basis of known dielectrics, dielectric striction

and angular

constants, contains several constants which characterize the criti-
cal vibrations and the degree of participation of a given ion. The
same constants determine the spectrum of the low-lying excitations
[1], so that by using the Mossbauer effect it was possible to gain
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an idea about these fundamental characteristics of the crystal. The
temperature relationship of the anomaly above the transition is in-
versely proportional to the root of the dielectric permeability e,
while below the transition it is expressed by e and the spontaneous /32
polarization P. -

As in [1], we are discussing an ideal crystal. For the sake of
an example, we are making our estimates essentially on perovskites,
with transition from the cubic to the tetragonal phase, although
the general formulas are frequently applicable to any nonferroelec-
tric transition of displacement type. Section U4 discusses several
theories and estimates for the MSssbauer effect in the vicinity of
phase transitions of order-disorder type. In this case, the nature
of the anomaly in the Debye-Waller factor depends on the relation-
ship between the natural width of the M&ssbauer line to the relaxa-
tion time of the ions in the cells and the equilibrium distribution.

2. GENERAL FORMULAS FOR THE PROBABILITY
OF MOSSBAUER ABSORPTION

The conventional expression for the probability of Mdssbauer
absorption ¥ by the thermal Debye-Waller factor [6] is obtained by
using a harmonic approximation for the lattice vibration. In the
vicinity of the phase transition, there are effects of anharmonic-
ity; therefore, we select an expression for W which is somewhat more
general than the usual one.

The probability of the absorption of a quantum with the fre-
quency w in the Mossbauer effect is determined by the expression
[6,7]:

W(w) =

05: J[ Jiwmw)t-T|t] 3G (8)-0) ~iq(H (o)1) |

- 00

(1)

Here wgy is the resonance frequency, I' is the natural width of
the nuclear level, 3 is the quantum wave vector, Z;(t)-g is the
Heisenberg operator for the nucleus displacement relative to the

equilibrium position (u?) = U

Ga(e) = o ME et

H is the usual phonon Hamiltonian of the crystal [see, e.g., (1.1)
and (1.9)]. The sign (---+) indicates a statistical average:

<...> =Sp("')ex2(_BH) . B

Sp exp(-gE) > P T HT L2

where og is the absorption cross section.
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In the case under consideration, involving transitions of dis-
placement type, the times which characterize the motion of the ab-
sorbing ion have the order of the inverse optical frequencies and
are significantly less than the emission times 1/T 2.10"9 sec. There-
fore, the expression in angular brackets in (1), before being inte-
grated over ¢, can be averaged over the time; then the average over
the time, on the basls of the general theorems, can be statistically
replaced by the statistical mean. As a result, we obtain

o
0 T

W(w) = — f? , (2)
(w-wg)? + T?

where the thermal Debye-Waller factor is given by the expression

f - | <e7LQ(ul-,;—ﬁ)>

. (3)

In Formulas (1) to (3), we have disregarded the presence of
spin in the nucleus and the effects of quadrupole and magnetic
splitting affiliated with it. This splitting can be equated in va-
lue with the line width, but is always much smaller than the optic-
al frequencies. Consideration of these splittings leads to the
fact that instead of (1) we will have the sum of several terms with
frequencies depending on the spin constant of the nucleus. If we
integrate this equation over a frequency range which is large rela-
tive to the line width but small relative to the optical frequencies,
we will find that the complete probability of the Mossbauer transi-
tion, as in the case described (2), will be equal to ogf2.

The factor f in (3) is calculated simply in the harmonic ap-
proximation, which (as it will be recalled) is not directly applic-
able to the transition region. However, for displacement-type
transitions, the anharmonicity is small [1]; this makes it possible
to obtain a number of successive approximations for the thermal
factor as well as for the thermodynamic values.

If we expand expression (3) in a series according to the pow- /34
ers of the exponent, we obtain:
q° 4
f=1- 5 {Lu-u)2) + %T {u-u)td - -« (4)

. > . . . >
where u expresses the projection of u; in the direction q.

The second term in (4) is expressed by the thermal Green's
function [8,1] G(K,iwn) as follows:

Cun® - u®) P - wP)d = 186 (kLiu). (5)

.
kn
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The third term is expressed by the two-phonon Green's function
K, which satisfies the Bethe-Sal'peter equation [8], which can be
written symbolically in the form

K = GG + GGTK (6)
where T is the amplitude of the two-phonon écattering.

By using the method given in Section 4 of [1], we can see that
the relationship of the second term (6) to the first is proportional
to the relationship of the temperature T to the atomic energy Eqts
i.e., to the parameter of anharmonicity. Therefore, the second
term (6) can give a significant indication in (4) only at very large
values of ¢, when the complete probability W ~ exp(-q{|u-u)?) is
much less. At not too high values of g in (6), it is sufficiently
limited by the first term, so that the third term (4) assumes the
form

1| >, 2
5 qanTE:GaB(k,twn)] i (7)
kn

Similarly, we calculate the remaining terms of the expansion
(4). As a result, we obtain

f o= exp‘[— % qaq8<(ua—ﬁa)(u8—ﬂs))]

((ua-ﬂa)(us—ﬁs)> = (uaus)—ﬁaﬁs = TE:GaB(k,iwn)

!
]
I
1
l
|
> ©
. , nk .
Expression (8) has a general form [6], but the average and G in (8)
correspond to the Green's function with anharmonicity taken into
account. This formula, as well as the analogous results in [1],
can be obtained if we use the "linear anharmonic approximation" [9],
in which we use the formulas of the harmonic theory, but we intro-
duce the temperature dependence phenomenologically into the Green's
function; in the first approximation for T/Eat’ such a method is
correct.

3. ANOMALIES OF THE THERMAL VIBRATIONS IN TRANSITIONS
OF DISPLACEMENT TYPE

The matrix Gyg in (8) for the case under consideration can be
obtained from (1.25):

§ . | . ») .
G 1(k,twn) = Mwnz + 4 - E wnz/ub V4@ wnz + Sy t Spp

~, |

Lrnz, z -1 ‘
b°b' 1 —_ + +

+ ——— ¢ wnz/ub, + Vb' + Qb' . (9)1



Here the subscripts b,b' mark_ the different optical coordinates:

the critical x, and the remaining x,, w, 2nmT are the discrete

frequencies of the temperature diagram of the technique [8], the
constants up and 3y characterize the completely effective masses

and the polarizability of the optical branches, v, is the volume of
>

Zus Nglgs 7 = k/k. The constants So(b) are

proportional to the squares of the optical frequencies at k-0, so

that for a critical coordinate, the S3‘¢/ matrix which is the reverse

of the matrix of the dielectric permeabilities of the compressed

crystal € is:

an elementary cell, g

unzcz
= 80 = Ae 3 A= ——. (10)
c

So(c)

The matrices 4,V and S at small k are given by (1.9) and are pro- /36
portional to k2, while the piezoelectric matrix § according to
(1.24b) is proportional to k and the polarization P.

If the temperature is not low relative to the Debye temperature
>
6p» then in the interval over k in (8) the principal contribution

is made by the region of large Z, of the order of the inverse lat-
tice constant 1/a; the contribution of the region of small k is
given by the statistical weight ~ k3. However, this principal con-
tribution is a smooth function of temperature and does not have any
peculiar feature in the vicinity of the transition. As stated in
[11, the critical phenomena are important only in the range of the
small wave vectors kK ~ 1/ave. Therefore, in order to find the a-

>
nomalous portion of the displacemeént from the function G(k,Zw,) in
(8), we can calculate the function which is regular in the vicinity

>
of the transition Ggpo(k,Zw,), obtained from G by the substitution

S9g = & = 0. The corresponding anomalous portion of the displace-
ment will be <uu“8>c:
>
- o 3 - 00 :
(ugug e = TZ <G(k,7,wn) G (k,@wn)> . (11)
> o B
nk

In integral (11), the region of small k~ 1/ave is significant.
Therefore, in (9) we can make use of the expansion of the matrices
which enter into it for small k. Then, as in Sections 4 and 5 of
[1], we can disregard the contribution of all normal optical branch-

> > .
es gr as well as the longitudinal critical branch z,%||7n. In addi-

tion, if we do not consider the case of extremely small 7, the temp-
erature frequencies w, = 2n77 in (9) and (11) is much greater than
the critical frequencies w, ~ (x/e)¥, and in summation over = in
(11) it is sufficient to replace the classical term with n = 0. As
a result, we will have:
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Here, as in [1], the matrices V, S and ¢ without subscripts corres-
pond to the critical branch while R;l faccording to (1.30)] stands

|

|

{uaus>c = TZ 3 1 - = f
=4 | 4-(V+Q) (Z+5)]! (v+@%y  4-vs. 'y ; (12)

>
for the projection of the matrix R into subspace, orthogonal to #u,
and the matrices taken in this subspace, the reverse of that ob-
tained:

r,~1 = = 24 8(g) (13) /37

¢ Znn/l (0) 9t o £=0
VRREVRRY)

Hy v

where AaB(E) is the algebraic component of the matrix element Ryg *

We will show that in the region above the transition tempera-
ture Ty, the anomalous portion of the displacement (12) can be ex-
pressed by the dielectric permeability e€(T). TFor the sake of de-
finitiveness, we will also discuss the case of perovskites with a
phase transition from the cubic phase to the tetragonal phase. Then
the matrices A, V and S in (12) will be given by (1.9), and the ma-
trix @ according to (1.24b) with T>T(,will be equal to zero. Let
us introduce [while integrating over k in (12)] the new variable

>
x = |k|V/e/x, so that the integral becomes
( r Sag /2% S 2 1y-1,+ (14)
uau8>c=_ . (E) fdxfdn Sp [x(l+x ¢)t ¢tX]
24w 0 ]
Here p = M/vc equals density, dn represents integration over the

vector angles 7 and the matrices y and ¢ depend only on the angles 7

A t a,-1 t a
X (azg toag o+ a.g ) (vtg t V.9 )

_ t a t a
¢ = 8,9 t 8,9 - (vtg tv.g )X s

3
= - - - . a _ a_ B o>> (2
gaB GaB gaB GaB nanB 3 guB = Z:eo e (neo) (15)
g=1

> s s
where e ; are the unit vectors of the principal axes of the crystal,

and a;, v;, §; are constants introduced in (1.9).

Thus, the anomalous portion of the displacement above the trans-
ition is increased with an approach to Ty, which decreases in abso-
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. lute value in inverse proportion to the root of the dielectric per-

meability.

In the tetragonal phase, the permeability along the tetragonal /38

axis x, ¢ = € , 1s (as a rule) less than the transverse permea-

XX "

bility Eyy = €2z T €. Therefore, the conversion of the variables

>
in the integral according to kX can be done more suitably with the

(12) is written in the form

T (VR >
<u0LuB>C = 8,n.3p <'ET> fdxfdn
,, .o i
1 _ 1
~ s rn A i ey 2ay=1 A_.: l_ BRI S .
a—(xv+1qPJ“b)(6 +8 E;+x S)t (v quJ:;)! a v(a)t v |ag

(16)

Here P is the polarization, and the matrices entered into the sys-
tem, related to the axes of the crystal according to [1], have the
form

2
‘Ut + van1 0 0
73 = 0 2
Ut + Uanz 0
0 0 2
vy t v N
(}q - Zii)n 0 0 \\
11 y 7
. Dy
1 = 912", ™ 0 3
1273 m 1
| (17)
[
. .- ;
=+ +x2(s,ts ny2) 0 0
} €u toa ‘
€4 ~ |
s 48" X +x25 = | 2 2
en | 0 l+x (st+san2 ) 0
2 2
0 0 l+x (st+san3 Y/ .
Here, a = azgZ + atgt + aaga is the matrix of the elastic coeffi-
cients, q;; are the striction constants, and the components (vt

are located according to the rule (13).
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Therefore, below Ty there is anisotropy of the vibrations
<“x2> # (u 2) = (uy%Y,. The temperature dependence of the dis-

placement is determlned by the temperature curve of the permeability
e and the polarization P. If the transition is close to the trans-
ition of the second type so that below Ty the relationship for ¢ /

1

and P & ~ s P ~ /Tc_T is fulfilled to a satisfactory degree,

-T
n 1 £
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1.0
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the displacement is likewise proportional to |T,-T|%
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If the elastic, striction, and dielectric properties of the
crystal are known, then expressions (12), (14%), and (16) contain

four unknown constants, which we can represent, e.g., by — , —/— ,

v

;% s 5% . In the low-frequency spectrum of the crystal, in addition
to these constants, we have two more: the actual value X and the
mass constant u [1]. Reduction of the number of constants is re-
lated to the fact that the use above of discarding in the sum for
frequencies of w, combined with n#0 correspond to the classical de-
scription of motion, when in the quilibrium function of the distri-
bution the multipliers with a kinetic energy are separated from the
terms with potential energy. As a result, in the average values of
the compound, the mass characteristics contained in the kinetic en=-
ergy drop out.

In the general case, the integrals (12), (1l4) and (16) must be
taken numerically. For illustration and explanation of the physi-
cal picture, let us consider as in [1] the hypothetical case of an

isotropic crystal in which a, = vy = 8, = 0. As mentioned in (1],

such an estimate is definitely satisfactory and quantitative for
the cubic crystals under consideration. Calculation in this case
is more likely to lead to a system of coordinates where one_of the
axes 1s directed along % and the other is perpendicular to %k and
the tetragonal axis. If in (16) we carry out integration over x,
for the anomaly of the cross section of the thermal displacements
we will obtain

|
2
<ux2+u2+u22> = T fd TN LTS UI P \1
|
|

e~ Tnp — .
Y AL W me VR, 16a,2VR,
.2 ¢

- Wat (/Hl + /RJ_)

Here _ o ' o /b0

n q
- - - b4
gz =mnyy n,;%2 =1-3%2; g = EL _Ei + qaan :
-t

3y




n v
4 q +
_ 2 _ Ly
= — + " . = - _ —— W = — e
) az(ql2 GG dg T 9y T4y, 2’ °t a, ’
(19)
2 2
€ Pce Pce q 2, 2
-, 2 2 _4 4. 2 2 - L Tyy My
= + - ; = - .
R, n, ny > — (a, 85 + a;n®); R 1 - Toa,
Equation (18) consists of two parts: the striction, proportion-
al to P2 and the "completely critical" latter term. The contribu-

tion of these terms to the anomaly of the displacement is different.
In transition to the ferroelectric phase, each of the values g,

and g; is less than the value ¢ of the high-temperature phase; there-
fore, the rigidity for the critical vibrations below the transition
increases by jumps, which in the absence of terms with P would lead
to an abrupt reduction of the amplitudes of the vibrations and an
increase in the Mdssbauer emission. With a further decrease in
temperature, € and the vibrational amplitudes continue to form so
that the temperature dependence of the Debye-Waller factor which is
observed would have the form shown in Figure la. However, the term
with P? describes the increase of the vibrational amplitude as a
function of the appearance of a piezoelectric relationship between
the acoustic and critical branches, which reduces the elastic moduli.
Therefore, the resulting sign of the jump in the Debye-Waller factor
at the transition point depends on the relationship of the values
Utz/st and PZEL at T = Tg. The further changes in temperature are

also determined by the concurrence of these two terms. It is pos-
sible to show that the picture which has been described with con-
tributions having different signs is also retained in considering
the anisotropic terms s,, v,, and ag.

The experimental results, particularly in [3], clearly show
that the conventional situation i1s that shown in Figure 1b, when the
jump in the factor f at the transition point is negative, i.e., the
strictional jump is larger. In addition, there is a fall in the
amplitudes and an increase in f, i.e., the second term in (18) in-
creases with a drop in temperature which is more rapid than the
first.

It would be interesting to have more experimental material in
order to get an idea of the degree of generality of such a theory. /4l
At the present time, however, we can only point out, for example, -
that in the case of BaTiOg3, the increase with the decline in T of
the second term (18) relative to the first is natural, since in

this substance below Ty the values P and e, change to a very small

extent, while ¢ decreases rapidly [10], so that the ratio e, /g, ,

"
involved in R;, increases rapidly.

Let us also introduce the expression for the anisotropy of the

vibrations below Ty in the case 84 = v, = a5 = 0. As designated in
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(19), we have

N 2 2
r { x %/ PPe [ (&n -nn ) -2(&n +an )
{u 2>c - <’L‘.'ch>c © B W 2J/&z mp —
Y o €4 p VB
0 1
g 2n 2 v 2
el L (2-3n 2)VR -VR, |, (20)
16a,? VR, Wa,?

Determination of the sign of (20) requires more careful esti-
mates. We can point out, however, that as e, /g, 1increases, R; in-

creases, so that at values of v,2/s, which are not too small, (20)
t t

is positive. Since in BaTiO g3, we have assumed that the Ti ion is
the one most strongly bonded with the critical vibration, then the
result mentioned in [2] regarding the sign of the anisotropy of the
vibrations. . of Ti agrees with that expected from (20). However, the
degree of anisotropy of about 50%, given in [2], appears to be too
high. Estimates with the aid of (20) give a value for the aniso-
tropy on the order of 0.01-0.1.

4. ORDER-DISORDER TRANSITIONS

For order-disorder transitions [10], ions or group of ions have
several symmetrical positions of equilibrium in the cell, which have
statistically equal populations above transition, while below trans-
ition there is a spontaneous asymmetry of the population, as in the
familiar Ising model. The full potential at which the ion moves
can be strongly anharmonic, so that the picture of the transition
differs from the case of transitions of displacement type. We will
show that in this case the probability of the Mossbauer effect in
the vicinity of the transition may show anomalies.

Previously, in the transition from (1) to (2) and (3), we made
use of the fact that the line width T is much less than the charac-
teristic frequencies of the motion of the ions, which in the case of
displacement type transition were optical frequencies. In the given
case, the characteristic time is the relaxation time T of the dis-
tribution of the ions in the cells to equilibrium. The MdOssbauer
effect will be sensitive to transition only in the case when the ir-
radiation time 1/T is greater than or on the order of 1. In ferro-
electrics, the order of the value of 1 can be estimated experiment-
ally from data on the dispersion of the dielectric permeability [11,
12]. The values 1 and 1/T change within wide limits and can be com-
mensurate with one another.

For the sake of simplicity, we will initially disregard the
quadrupole and magnetic fission and limit ourselves to the case of
small g, when the exponents in (1) can be divided according to de-
grees of qu:

36
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ool y, Z(w-wg)t-T|¢ v »]
W= — fdte 0 | t] [1 + qan((ua(O)uB(t)) - (ua(o)ue(o)> L

1

|

‘

g S L - 21)

For a qualitative description of the phenomena related to the trans-
ition, we will assume that the correlation function of the coordi-
nates falls with ¢ according to a simple exponential law with a re-
laxation time 1 [12]:

R
[~

(u (0)-u I (u (t)-u,)> = ¢u (0)u (t)y - u u, =
o o B8 B o R o

((ua(O)uB(O»' - &afts)e—t“ . (22)
Then (21) gives:
W= iﬂ L + q g (u (0)u_(0)Y-u u )
T (w—w0)2+F2 atlB a B a B
T'+1l/1 _ T
<(w—w0)2+(I‘+l/T)2 (w-wy)2472 ) | * (23)

In the case of large relaxation times Tt>>1, the terms in pa-
rentheses in (23) are shortened. In this case the atom cannot jump
from one potential hole to another during the radiation time and
the result is naturally that it is not sensitive to the transition
point. In the case Tt ~ 1, the dependence of the probability upon /43
the frequency takes the form of the superposition of two lines of -
equal width. With approach to-the transition point, the area of
the narrow line (as we can see later on) is reduced somewhat, while
the area of the wide one increases. Finally, in the case TI't<<l, the
first term in parentheses in the frequency range |w-wg|<<l/t is much
smaller than the second. We then see (as in the case of the dis-
placement-type transitions) that the probability of absorption 1is
expressed by the correlation function of the ions and shows a parti-
cular feature at the transition point.

For explaining the nature of this peculiarity, let us use the
model which was used previously in [12,13] and begin by evaluating
the case of a nonferroelectric transition. The Hamiltonian of this
model has the form

e |

_2 o
H =Z L +Zu(x-) - %Z V(r-r")x-x-,
: 2 r r“r' (2u)
r r

rhz ! |

For the sake of simplicity, let us limit our consideration to uni-
dimensional motion: xs, is the coordinate of the ion relative to the

37



~—

PR
center of the cell, u(x) = u(-x) is the anharmonic potential of the

" ion in the cell; the potential V(r) has spherical symmetry and a
large but finite radius of motion ry. A phase transition of the
second type is included in the appearance with T = T, of an average
displacement relative to the center. The transition takes place at
high temperatures, so that the motion of the ions can be considered
classical.

Using the method given in [13,14]3, the desired value of the
correlation function in the first approximation for l/ro3 can be
written in the torm

jhdx;(x;—i)zexp [ Bu(x )+BV0xx +— z: V(r r )(x-—x)(x— —x)]f
3 7 — J‘]
((2-8)2) = - |

- - - Tt P! o o
.[derexp [ Su(xp)+BVUxxr+§ > Wr-r )(x;-x)(x;,-x)]
7 _ ., (25)
r,r
Here Vo = L V(r), and the effective interaction 4 analogous to the

Debye poten%ial [14] is considered as the correlation of the parti-
cles in the first approximation:

| Vs 7= — Lil
v(r) = E k — e TkT ; Vg o= E v(mye tRT |
= 1-8Vg {z-2)2)g - % (26)
k r i
The indication {:**) 3 means that the averaging takes place at Vo= o0.

In the transition region BV(P) there is a small value on the order
of r03 [13]. If we expand (25) over BV, we obtain

YN T 2 2 BV
{x-xg)*Yog-(x2-2¢%) ~— .
= 1-8V; (27-xg?) |

k

Ux-2)2) = 2Z(T)-z2

i} _ ' (27)
where xg = x(T) , x2(T) = (x?) g

In this approx1matlon the transition temperature is T,=V xz(T ).
Therefore, in the region of small k and |T- Ta I the denomlnator of
the Green's function in (27) has the form

kzl”oz T—TG xoz
1l - BV%(EZ_—.’EOZ) = - ta T + — 5
[ X
N J (28)
p2=—EI’2V(f')'a=l+T-——Zn—.;2(T)
0 Vo 4= ’ ¢ dr T=Tg

r
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Hence, the sum over k in (27) has the same form as in (12), (14)

and (16), and the anomaly of the quadradic displacement is propor-
tional to |T—Tc|%. The expression in brackets in (27) is positive
so that the probability of the Mossbauer effect always has a mini-
mum at the transition point, in accordance with the reduced rigid-
ity for long-wave fluctuations in the vicinity of T,. In the case
under consideration, with large ry, the second term in (27) below
the transition is proportional to T-T, and greater than the third

-

term as far as r03:vc is concerned. Therefore, in the region of
v 2
kN : U T R ] - R — 1 "~ .
applicablility of the approximation used L[131, T,y>>|T-T,|>> T, is /U5
o

the probability of the Mdssbauer absorption below T, and is much
greater than that at lT—Tc| above the transition, and increases lin-
early with T,-T.

In ferroelectrics, order-disorder transitions are characteris-
tic of uniaxial crystals. In these cases, there is a significant
influence of long-range dipole=dipole interaction [13,12]. Thus,

>
at I'>T, the correlation function in the range of small k is given
by the expression [13]:

o ymre 2 k
(wgz_z) = X s A = __;gff 5 My = ?? . (29)

2., 2 . ¢
k I’O .’172 1 ’
—_—t A =—l= +n

6 Tc € X

Here € is the dielectric permeability, proportional to 1/(T-T,),
eeff is the effective charge of the ions and it is assumed that it

is much greater than the inverse dimensions of the sample 1/L. This
formula differs from the analogous expression in (28) as far as the
supplementary term nxz in the denominator is concerned, giving cor-
relation effects at small k. As a result, the anomalous portion of
the quadradic displacements in the vicinity of T,, instead of being
radical, will have a weaker characteristic ~|T-TC,]Zn|T—Tc]:

(30)

— — —\ k
2 zh-(x2)% Ve 3/€'<Ax2‘>2 lne

8 Tc € .

2= f2(r,) |1+ g —
.’XJ2 1’03

Note that in the case of the order-disorder transitions, when
the anharmonicity is not small, a special portion f does not con-
tain the small factor T/eg¢, which is found for displacement type
transitions (12). Therefore the peculiarity, generally speaking,
must be noticeable. This can partially compensate for the weaker
character of the peculiarity (30); however, comparison with experi-
ments requires more detailed investigation.
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5. CONCLUSIONS

From what has been stated above, it is clear that studies of
the Mossbauer effect in the phase transition region are of consider-
able interest. In the case of displacement type transitions, for
which it is possible to formulate a quantitative description, these
measurements make it possible to measure the microscopic constants.
In the case of order-disorder transitions, the MOssbauer measure-
ments can give qualitative information regarding the relaxation
times and the transition parameters.

It is also very interesting to consider the Mossbauer measure-
ments in the field of nonferrocelectric structural transitions of
the first type in crystals. The dielectric properties do not show
any anomalies in this case. Therefore it is always clear whether
or not the transition is close to a transition of the second type
(as in transitions of displacement type in ferroelectrics) or wheth-
er the phases above and below the transition are very different, and
the anomalies (corresponding to the second type transitions) are
absent.

It is clear that the characteristic minimum for the probability
of a Mossbauer emission is related to the correlation effects and
the reduction in the rigidity of the system for long-wave correla-
tions. However, in the case of "normal" transition of the first
type, this probability must (generally speaking) have as its trans-
ition point only a jump and a break in the temperature dependence;
However, there must not be any decline in the approach to the trans-
ition. Therefore, relatively simple Mdssbauer measurements can
give reliable information regarding the nature of the transition.
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